How do robots like ASIMO and Mahru work?

Robots like ASIMO and Mahru are sophisticated, expensive, highly technologically advanced machines that are built upon major components found in humans. Robot technicians use the inner workings of the human body as the model for the robots that they make. This modeling ensures that their robots are as lifelike as possible. First, the robot technician designs the five major components he or she will put into the robot: a body structure, a muscle system, a sensory environment, a power source, and a brain system.

Next, they build an intricate machine made up of electrical circuits, electrical valves, piston cylinders, electric motors, solenoids, hydraulic systems, and more—each plays a specific role in getting the robot to work. Every robot has a computer that controls everything else within its body. Many robots can talk and some can even smell, taste, and hear. To get the body of a robot moving, the computer must “tell” the specific part to move. If the technician wants the robot to do something new once it has been made, he or she writes a new computer program. In some cases, if the task is too big for the robot’s wiring system, new parts need to be installed. NUMBERS AND COUNTING

Which tree produces the largest nut?

The coco de mer tree, a palm that only grows today on two islands in the Seychelles, produces both the largest seed (each weighs about 44 pounds [20 kilograms]) and the largest nut in the world. The nut, which takes six to seven years to mature and another two years to germinate, is sometimes called the sea coconut or Seychelles nut. When early explorers first discovered the nut, they thought it came from a mythical tree at the bottom of the sea.

Sixteenth-century European nobles decorated the nut with jewels as collectibles for their private galleries. Today, the coco de mer is a rare protected species.

Does the brain feel pain?

Technically, no. While it is responsible for receiving and transmitting all messages of pain for the whole body, the brain itself does not have pain receptors.

That means that, if you could somehow gain access to another person’s brain, you could poke it or pinch it and that person would not feel the pain.

How do seeds become plants?

Once seeds are fully developed, they need a good place to grow. If they just fell to the ground beneath their parent plant, they would struggle, competing against each other for sunlight, water, and minerals. Most seeds need to travel—by wind, water, or with the help of insects and other animals—to better places to germinate, or start to grow into new plants. Some seeds, like those from conifer and maple trees, have wings attached. Others, like those of dandelions, have parachutes made of tiny hairs. Both features allow the seeds to be carried great distances by the wind, and they sometimes land in spots that are good for germination. Water carries other seeds to good growing places; the hard, watertight shell of a coconut, for instance, allows it to travel many miles at sea before finding a beach where conditions are suitable for growth.

Seeds sometimes have to wait a long time before they find good places to grow, places where the sun, moisture, and temperature are right. Most seeds are designed for the wait, protected by a hard outer pod (except those of conifers). Some seeds wait years to germinate, and some just never do. But inside each seed pod is a baby plant, or embryo, and endosperm, a supply of starchy food that will be used for early growth if germination takes place. Then a tiny root will reach down into the soil, and a tiny green shoot will reach up, toward the light.

Why are there sixty seconds in a minute and sixty minutes in an hour?

Around 2400 BC, the ancient Sumarians, who used six as their mathematical base, divided a circle into 360 degrees, with each degree subdivided into another 60 parts, and so on. The Romans called these units minute prima, or first small part, and secunda minuta, or second small part. This system was perfect for round clock faces, and that’s why we use minutes and seconds as divisions of time.

How do frogs make their loud croaking sound?

Frogs are able to make their croaking noises because they have simple vocal cords that have two slits in the bottom of the mouth. These slits open into what is called a vocal pouch. When air passes from the lungs through the vocal cords, a sound is produced. The inflating and deflating vocal pouch makes the sound louder or quieter.

That sound changes depending on the kind of frog there are as many different kinds of croaks as there are frogs! Frogs croak for the same reasons that many animals make noises: to track down and then select a mate, and to protect their territory from other male frogs.

Who invented the zipper?

Like many inventions, the development of the modern zipper can be traced to a series of events. In 1893, Whitcomb Judson patented and marketed a “clasp locker,” a complicated hook-and-eye shoe fastener. Together with businessman Colonel Lewis Walker, Whitcomb launched the Universal Fastener Company to manufacture the new device. He did not use the word “zipper,” although many people often credit him as the zipper’s creator. Instead, it was Swedish-born Gideon Sundback, an electrical engineer who was hired to work for the Universal Fastener Company, Who gets the credit.

He was responsible for improving Judson’s fastener, and by December 1913, he had designed the modern zipper. Sundback increased the number of fastening elements from four per inch to ten or eleven, had two facing-rows of teeth that pulled into a single piece by a slider, and increased the opening for the teeth guided by the slider. Sundback also created a machine that was able to manufacture the zipper.

What are antibiotics?

Antibiotics are medicines that help the human body fight bacteria, either by directly killing the offending germs or by weakening them so that the body’s own immune system can fight and kill them more easily.

The most widely known antibiotic is penicillin, which is made from mold. Penicillin kills bacteria by interfering with the formation of the cell walls or cell contents of the bacteria.

How does a rocket blast off?

Explosive chemical reactions are what send spacecraft into space. A rocket burns fuel to produce a jet of hot, expanding gas. What fuel is used varies, but whatever the mixture, it causes the explosive chemical reaction.

Because a rocket needs thrust to escape Earth’s gravity, the explosive chemical reaction takes place in a confined chamber and releases gases into a cone-shaped nozzle out the back end of the rocket. The cone shape accelerates the gases and they blast out of the engine at up to 9,941 miles (15,998 kilometers) per hour.

What would happen if there wasn’t a Sun?

Without the Sun, life on Earth would not exist. The planet would be a frozen dark ball, drifting in space. The Sun provides light, heat, and energy, which stirs up the atmosphere to create winds and rain. With it, plants grow, and animals and humans eat.

However, the Sun’s heat output changes over time, which affects our daily lives, the climate, and our satellite communications.